September 23, 2025

Guide: Getting started with Klu TypeScript SDK

Stephen M. Walker II · Co-Founder / CEO

Sure, here's a step-by-step guide on how to create your first Klu action using the TypeScript SDK:

Step 1: Install the Klu TypeScript SDK

First, you need to install the Klu TypeScript SDK. You can do this by running the following command in your terminal:

pnpm i @kluai/core

Step 2: Import Klu

Next, you need to import the Klu module in your TypeScript file:

import Klu from "@kluai/core";

Step 3: Initialize Klu

Now, you need to initialize Klu with your API key:

const klu = new Klu("YOUR_API_KEY");

Step 4: Create an Action

To create an action, you need to use the createAction method. This method takes an object as an argument, which should contain the following properties:

PropertyTypeDescription
namestringThe name of the action.
descriptionstringA brief description of the action.
promptstringThe prompt that will be sent to the model.
providerstringThe model provider.
modelstringThe model for the action.

Here's an example of how to create an action:

const action = await klu.actions.create({
  name: "Content Analyzer",
  description: "Analyzes any given piece of text content.",
  prompt:
    "Analyze the following content\nProvide a summary of the main arguments\n======\n{{content}}",
  action_type: "prompt",
  app_guid: app.guid,
  model_guid: models[0].guid,
});

Step 5: Run the Action

Finally, you can run the action using the runAction method. This method takes the action ID and the input as arguments:

const result = await klu.actions.prompt(action.id, {
  content: "Your content here",
});

The runAction method will return the generated text.

And that's it! You've just created and run your first Klu action using the TypeScript SDK. Remember to replace 'YOUR_API_KEY' and 'Your content here' with your actual API key and the text you want to analyze, respectively.

If you want to learn more about the Klu TypeScript SDK, you can check out the developer docs.

More articles

Continue exploring the Klu blog.

Fresh guides and product insights from teams building with Klu.

January 8, 2026

Optimizing LLM Apps

This comprehensive guide provides developers, product managers, and AI Teams with a structured framework for optimizing large language model (LLM) applications to achieve reliable performance. It explores techniques like prompt engineering, retrieval-augmented generation, and fine-tuning to establish strong baselines, fill knowledge gaps, and boost consistency. The goal is to systematically evaluate and improve LLM apps to deliver delightful generative experiences.
Read article

December 15, 2025

Comparative Analysis: Google Gemini Pro vs. OpenAI GPT-3.5

In this article, we provide a comparative analysis between Google's Gemini Pro and OpenAI's GPT-3.5, evaluating their performance, scalability, and cost-effectiveness.
Read article

It's time to build

Collaborate with your team on reliable Generative AI features.
Want expert guidance? Book a 1:1 onboarding session from your dashboard.

Talk to sales